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Appendix

METHODS

We use discrete-time branching processes, where time is measured in genera-
tions, which entail the cycle from a virion infecting a cell through to the release
of o�spring virions. To analyze the branching processes, we use generating func-
tions which gather the information on the probabilities p(k) that a virion pro-
duces k virions for the next generation: g(z) =

∑∞
k=0 p(k)z

k. Standard branch-
ing process theory implies that the probability of eventual extinction e is given
by the smallest positive solution to g(e) = e. The probability for a viral lineage
to survive the early steps and lead to emergence is Pe = 1− e = 1− g(1− Pe).
These results can be extended to multitype branching processes, with the gener-
ating map gi(~z) =

∑∞
k1=0 ...

∑∞
kn=0 pi(

~k)zk11 ...zknn where pi(~k) is the probability
that one virion of strain i produces a set of k1 virions of type 1, k2 virions of
type 2, etc (Harris 1963).

A useful example is the generating function for a geometric distribution of
mean N , which corresponds to the distribution of o�spring virions assumed in
the main text. The probability to produce k virions is Nk/(N + 1)k+1, leading
to:

ggeom,N (z) =

∞∑
k=0

Nkzk

(N + 1)k+1
=

1

1 +N(1− z)
. (1)

In particular, if a virion leads to emergence with probability Pe, and thus its
lineage goes extinct with probability 1− Pe, the probability of emergence con-
sidering all the virions produced by the infected cell is 1 − ggeom,N (1 − Pe) =
NPe/(1 +NPe).

EARLY MUTATION

Let us de�ne gearly(z1, z2) as the generating function for one generation, starting
from a virion of the initial strain when only early mutations can occur. When
writing equations for the generating function, a virion of the mutant type cor-
responds to a term in z2, and a virion of the initial type to a term in z1. A
virion of the initial strain dies without infecting a cell with probability 1 − q1,
which leads to a term in z01z

0
2 . With probability q1, it successfully infects a

cell, where with probability µ it produces a geometric distribution of mean N∗

virions of the mutant strain (term in 1/(1 +N∗(1− z2))), and with probability
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(1 − µ) a geometric distribution of mean N1 virions of the initial strain (term
in 1/(1 +N1(1− z1))). The generating function gearly(z1, z2) is then:

gearly(z1, z2) = 1− q1 + q1

(
µ

1 +N∗(1− z2)
+

1− µ

1 +N1(1− z1)

)
. (2)

With s2 the survival probability of a lineage initiated by one virion of strain 2,
the probability of emergence Pe is solution of 1 − Pe = gearly(1 − Pe, 1 − s2).
Solving this equation, and using Pe > 0,

Pe = 1− 1

2N1

(
αearly −

√
α2
early − 4N1

(
1 +N1 −N1q1 +

µq(N1 −N∗s2)

1 +N∗s2

))
,

(3)
with αearly = 1+ 2N1 −N1q1 +

µN1q1
1+N∗s2

.The �rst order of the Taylor expansion
of this expression for µ around 0 corresponds to equation (1) of the main text.

LATE MUTATION

Let us de�ne glate(z1, z2) the generating function for one generation, starting
from a virion of the initial strain when only late mutations can occur. When
writing equations for the generating function, a virion of the mutant type cor-
responds to a term in z2, and a virion of the initial type to a term in z1. A
virion of type 1 dies with probability 1− q1 without infecting a cell, leading to
a term in z01z

0
2 . Alternatively it successfully infects a cell with probability q1,

where it produces a geometric distribution of mean N1 virions, and each of these
virions is mutant with probability µ (leading to a term in z2) or non-mutant
with probability 1− µ (leading to a term in z1). That leads to:

glate(z1, z2) = 1− q1 +
q1

1 +N1(1− µz2 − (1− µ)z1)
. (4)

For the �rst generation after mutation, the virion may carry non-mutant pro-
teins along with its mutant genome, so it successfully infects the next cell with
probability q∗ instead of q2, thus a lineage initiated by such a virion has a
survival probability s2q

∗/q2. The probability of emergence Pe starting from a
virion of the initial strain is solution of 1 − Pe = glate(1 − Pe, 1 − s2q

∗/q2).
Solving this equation for Pe, and using Pe > 0:

Pe = 1− 1

2N1(1− µ)

(
αlate −

√
α2
late − 4N1(1− µ)(1 +N1(1− µ(1− s2q∗/q2))(1− q1))

)
,

(5)

with αlate = 1 + N1(1 − µs2q
∗/q2) + N1(1 − µ)(1 − q1). The �rst order of the

Taylor expansion of this expression for µ around 0 corresponds to equation (3)
of the main text.

A limitation of our approach is that we assume that q∗ is a constant. How-
ever, if proteins can be produced from replicated genomes within the infected
cell, the proportion of mutant proteins depends on the number of mutant
genomes produced by a given infected cell. However, this is an issue only if
µN1 is of the order of one. Indeed, if µN1 � 1, cases when a cell produces
more than one mutant at the same time are very infrequent and thus can be
neglected. And if µN1 � 1, the standard variation in the number of mutant
genomes produced by a given infected cell (which is the square root of the mean
for a Poisson process) is small compared to the mean.
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STAMPING MACHINE REPLICATION MECHANISM

WITH MUTATIONS FOR BOTH STEPS

We have previously compared early and late mutations for a given mutation
rate, in order to discuss the di�erent e�ects at play. Now, we treat the general
case of a stamping machine replication mechanism with a mutation rate µearly
for the �rst step and µlate for the last step. We have to distinguish between
virions carrying a mutant genome produced by an early mutation, which we will
denote by a term in z2,early, and virions produced after a late mutation, which
we will denote by a term in z2,late. Assuming that there is no mutation from
strain 2, the generating function is:

g(z1, z2,early, z2,late) = 1−q1+q1
(

µearly
1 +N∗(1− z2,early)

+
1− µearly

1 +N1(1− (1− µlate)z1 − µlatez2,late)

)
.

(6)
The probability of emergence Pe starting from a virion of the initial strain is
solution of 1 − Pe = g(1 − Pe, 1 − s2, 1 − s2q

∗/q2). Solving this equation, and
using Pe > 0:

Pe = 1−
α−

√
α2 + 4N1(1− µlate)β

2N1(1− µlate)
, (7)

with:

α = 1+2N1−N1q1−µlateN1

(
1 + s2

q∗

q2
− q1

)
+
µearlyN1q1(1− µlate)

1 + s2N∗
, and (8)

β = −1−N1+N1q1+µlateN1(1−q1)s2
q∗

q2
+µearlyq1

−N1 +N∗s2 + µlateN1s2
q∗

q2

1 + s2N∗
.

(9)
The �rst order of the Taylor expansion of this expression for µearly and µlate
around 0 corresponds to adding the contributions from mutations at each step,
using equations (3) and (5) of the main text. Whether phenotypic mixing in-
creases or decreases the probability of emergence depends on the phenotypic
parameters and the relative mutation rates.

ANOTHER OFFSPRING DISTRIBUTION OF VIRIONS

We have assumed that infected cells produce new virions in numbers following
a geometric distribution, as would be the case for an infected cell producing
virions at a �xed rate per unit time which is also subject to a �xed death
rate per unit time. However, as pointed out by Pearson et al. (2011), another
possible scenario is that infected cells could burst and release a �xed number N
virions. We explore this scenario in this section, and show that it gives results
that closely parallel those shown in the main text.

First we consider the fate of a single mutant (i.e. type 2) virion. The gen-
erating function for the number of virions for one generation is now gburst(z) =
1−q2+q2zN2 . The survival probability is the solution of s2,burst = 1−gburst(1−
s2,burst), which leads to s2,burst = q2(1− (1− s2,burst)

N2).
Now consider the fate of a lineage beginning with a single virion of type

1. If an early mutation occurs, N∗ mutant virions are released, each with
a survival probability of s2,burst, leading to the survival probability 1 − (1 −
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s2,burst)
N∗

. Following the logic in the main text, the emergence probability is
then q1µ(1−(1−s2,burst)N

∗
)/(1−q1N1), a result that is di�cult to discuss in the

general case. However, if N∗ = N2 (i.e. the phenotypic e�ect on N is advanced
by one generation), because s2,burst/q2 = 1 − (1 − s2,burst)

N2 , the emergence
probability simpli�es to µq1s2,burst/(q2(1−N1q1)). In the main text, the result
for a geometric o�spring distribution was q1µN

∗s2/((1−N1q1)(1 +N∗s2)). In
the case whereN∗ = N2, and using the result s2 = q2(1−1/N2q2), the emergence
probability for the geometric distribution is then q1µs2/(q2(1−N1q1)). This is
identical to the result just derived for the burst model, except for the value of
the survival probability of a mutant virion.

When a late mutation occurs, we can use the same reasoning as in the main
text, and again the only di�erence would be that s2,burst replaces s2, so the
discussion would be very similar.
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